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CONVECTIVE INSTABILITY IN A MEDIUM WITH SPIRAL TURBULENCE 

Yu. A. Berezin and V. P. Zhukov UDC 532.5 

In the papers of Moiseev, Sagdeev, Tur, et al. (see [i] and the literature cited there), 
the generation of large-scale convective structures on a background of spiral turbulence was 
considered and the relevant equations were obtained and analyzed. It was assumed that the 
turbulence is homogeneous and isotropic but does not possess reflection invariance. In this 
model random perturbations are amplified, which can lead to generation of large-scale vor- 
tices. This situation was studied in [i] for the example of a plane-parallel layer of in- 
compressible liquid heated from below. Simplified boundary conditions were assumed in order 
to obtain an analytic solution. It was shown that as the spirality increases the minimum 
critical Rayleigh number decreases and the horizontal dimensions of the convection cells 
increase. At a critical value of the spirality, the structure of the convective flow change 
completely and a vortex is formed whose dimensions are determined by the external conditions 
of the problem such as inhomogeneities in the horizontal direction. 

In the present paper the equations of [i] are used to analyze the convective instability 
in an infinite horizontal layer and in a disk heated from below in the linear theory. 

The equations describing convection for large-scale disturbances in the presence of 
spiral turbulence have the form [I] 

au Vp + vAu + ~gOe + ~gA~f, oO 0-7- = - -  p--~ ~ = A (eu) + %AO, d i v  u = u, 

f = e(e r o t  u ) -  ( e v ) [ e u l ,  e = (0, O, t ) .  

Here v and X are the turbulent viscosity and thermal conductivity. Because these quantities 
are nearly equal to one another [1-3], we assume v = X. The coefficient X is associated with 
the spirality of the turbulence. The rest of the notation is standard [2]. 

We transform to dimensionless variables using as scales of measurement [2]: x 0 = H 
(height of the liquid layer) for length, t o = H2/~ for time, u 0 = v/H for velocity, P0 = 
00v2/H 2 for pressure, and T o = AH for temperature. Then 

On/at = - - V p + A n + B a O e  + B a  Sf ,  OO~t = ( e n ) + A O ,  ( 1 )  

d iv  u = O, f = e(e r o t  u ) - -  ( e v ) [ e u ] ,  e = (0, O, t ) ,  

where Ra is the Rayleigh number and S is a coefficient connected with the spirality of the 
turbulence (Ha  = ~gAH4/v 2, S = %v/H3). 

We consider an infinite horizontal liquid layer included between two planes z = 0 and 
z = i. Then u = (u, v, w) and @ are given by 

u = u ' ~ )  s in  kx exp @t), v = v'(z) s in  kx exp (?t) ,  

w = w'(z) c o s k x e x p  (~ t ) ,O = O'(z) cos kx exp (~t). 

In the case of a cylindrical layer (disk) cos kx is replaced by the Bessel function of 
order zero J0(kr) and sinkx is replaced by the Bessel function of order one Jl(kr). The 
results given below do not change in this case. Putting these substitutions into (i) we find 
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(we omit the primes on u', v', w', 8'): 

(? + k~) u _  ~ S d~ (7 % k~) v _  d~ = _ n a  S d~ = k p + R a  d z '  d7  dz '  (2 )  

(~ + k s) w asw ap dw + ku = O .  - -  ~z z = dz ~ RaO + Ra Sky, (? + k s) O dsO 
- -  dz -'-~ = w ' dz 

For ordinary convection in a horizontal layer with free boundaries the eigenfunctions 
are proportional to sinn~z and the vertical component of the velocity vanishes at z = 0 and 
z = I. In the case of convection with spiral turbulence these eigenfunctions correspond to 
periodic boundary conditions in the z direction. Substituting in (2) eigenfunctions w ~ 
sin ~z, u ~ cos ~z, and so on which correspond to the lowest harmonic, we obtain the follow- 
ing expression for the increment for wave number k [i] 

(RaSS2gS (__~s = f )  + RakS) 1/s 
= [ ~2 + ks - -  (a ~ + kD. 

Putting ~ = 0, we find the critical Rayleigh number Ra 0 as a function of k: 

~ Rao - (k4 + 4~s (~2 + ks)8 ( ~ s .  k~) s S ) ~ / s  _ ks 
- -  2ns (z s " k s) S s 

The d e p e n d e n c e  R a0 (k ,  S) was a n a l y z e d  in  [ 1 ] .  

The s p i r a l i t y  c o e f f i c i e n t  can  be  d e f i n e d  as  s = R a S .  T h i s  fo rm i s  more c o n v e n i e n t  in  
s t u d y i n g  t h e  p r o p e r t i e s  o f  t h e  n e u t r a l  s t a b i l i t y  c u r v e s .  I n  t h i s  c a s e  

{s s k s )'" + ks)._ ( s _  ks) 
= ~  ~2+k~ ~ - - ( a  s + k  D, Ra0 ks (3)  

The n e u t r a l  s t a b i l i t y  c u r v e s  Ra0(k  , s )  a r e  shown in  F i g .  1. Curves  1-5 c o r r e s p o n d  t o  
s = 0, 0 . 8 ~ ,  ~, 1 . 3~ ,  2~,  r e s p e c t i v e l y .  As s i n c r e a s e s  f rom 0 t o  ~ min ima o f  t h e  n e u t r a l  
stability curves shift toward longer wavelengths and the minimum Rayleigh number decreases. 
As s approaches ~ the minimum Rayleigh approaches 4~ 4 z 389. The value of s equal to 
s, = ~ and Ra equal to Re, = 4~ 4 define regions with distinct properties: for s < s, there 
always exists a region of stable long-wave harmonics and when s = s, and Ra > Re, such a 
region does not exist, i.e., even infinite-wavelength perturbations become unstable. When 
s > s, the neutral stability curves do not have minimum points and waves with k = 0 will be 
unstable for any Re. In terms of the initial definition of the spirality this means that for 
S Ra > S,Ra, (S, = s,/Ra,) perturbations with k = 0 become unstable, i.e., 

Rao(k = 0, S) = Ra ,  S , / S ,  ( 4 )  

In the case of different boundary conditions the values of Re, and S, change, but the nature 
of the neutral stability curves and the dependence on k and s remains the same. Therefore 

(4) is universal for any boundary conditions. 

Since we are mainly interested in the generation of long-wave disturbances, we consider 
the conditions for which the maximum value of the increment 7 will lie in the long-wave region 
(k  ~ ~), i.e., we study the behavior of ~(Ra, s) at small k. It is easy to show that when 

Is - s,I ~ s, and k 2 ~ ~2 the increment and Ra0(k, s) become 

( R a - - R a ,  ~ a s  ( ~ = g ,  n = 2 ) "  ( 5 )  
? = a ( S - -  S , )  + ~ Ra,  k , Ra 0 = R a ,  I ~ k2 

In terms of the original definition of the spirality we obtain for Ra0(k, S) 

s ,  ( + ~__.3 s - - S ,  k2) .  
Ra 0 =  Ra,  y I ~aa.  s~ 

We c o n s i d e r  t h e  c a s e  o f  f r e e  b o u n d a r y  c o n d i t i o n s  a t  z = 0 and z = 1. I n  t h e  t h e o r y  o f  o r d i -  
n a r y  convection free boundaries are defined to be boundaries at which tangential stresses 
vanish, i.e., the conditions 3u/Sz = 3v/Sz = 0 are satisfied. The equations describing con- 
vection in the presence of spiral turbulence differ from the Bousinessque equations used to 
construct the theory of ordinary convection, therefore the conditions for free boundaries 
must be reformulated. We write (i) in the form 

Ou/Ot : - -O~ih /Oxk ,  ~i~ = P61k - -  (Ou/OXh + Ou~x~)  + 

Ra S(e~shm n + eheim,~)ume n. 
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We define a free boundary as one at which the tangential stresses vanish, i.e., Oxz = Oy z = 
0. Because Oxz = 8u/3z + Ra Sv, Oy z = 3v/Sz - Ra Su, the free boundary conditions in the 
presence of spirality take the form ~u/~z = -Re Sv, 8v/~z = RaSu. 

We assume as before that 8 is equal to zero on the boundary. The problem of the neutral 
stability curves has not been solved completely in this case, but it is possible to find Ra,, 
S,, a, q. To do this it is convenient to adopt the following change of notation: u = u', 
v = sv', w = kw', 8 = kg' We introduce the vorticity f = 3u'/Sz + k2w '. Then the system 

of equations (2) can be rewritten as (the primes on u', v', w', e' are omitted) 

y] = 0~  - -  k 2] -~ s2(a~v + klv) -~- Ra k38. 

YV = 02v - -  k~v + 02wi ( 6 )  

?0 = 020 - -  k~O -f- w, 02w --  k~w = --[ ,  0--- O/Oz. 

The b o u n d a r y  c o n d i t i o n s  a t  z = 0 and  z = 1 a r e  

0 = w  = f + s l v = O v + O w  = 0 .  ( 7 )  

I t  w i l l  be  c o n v e n i e n t  t o  d e f i n e  a f u n c t i o n  ~ s u c h  t h a t  ~ : 8 ,  = v .  Then  w i t h  t h e  h e l p  o f  ( 7 )  
we c a n  r e w r i t e  t h e  s e c o n d  e q u a t i o n  o f  ( 6 )  a s  ~ ,  = 32~ - k l ,  + 3w. The  b o u n d a r y  c o n d i t i o n s  
w i l l  be  e = f + s 2 v  = ~ = 0.  

We c a l c u l a t e  s ,  and ~,  p u t t i n g  k 2 = 0 .  L e t  s = s ,  + ~,  w h e r e  [~1 ~ s , .  Then  t h e  i n c r e -  
m e n t  ~ is of order ~. We assume a solution of (6) in the form of an expansion in this small 
parameter. The zeroth approximation has the form 

02f0 + s ~ W  o = O, 02% + Otv o = O, 02tvo = - - f 0 ,  v0 = 0 % .  

The boundary conditions in the zeroth approximation are w 0 = ~0 = f0 + s~v0- Then it is easy 
to show that 

U o ~ GOS 

w0 = - -  (Vo +~ t ) ,  

The first approximation is described by 

s , ( z  t/2), ]o 2 

% = s2 ~ sin s ,  (z -- t/2), s ,  = 2n. 

the equations 

02]1 + sl*OW1 = ?fo - -  2s*pOWo, 

(~lq[~l -~ OWl = Y~O' /1 = --09"Wl' 1)1 = 0~1" 

The b o u n d a r y  c o n d i t i o n s  a t  z = 0 and  z = 1 t a k e  t h e  f o r m  

hence 

wl = ~ = ]1 + s~,vl + 2s,~vo = 0, 

( 8 )  

f l  + s~.vl__ ~ 7F - -  2s .pv  o, ( 9 )  

vl + wl = 7 J%dz + C, fl = --02wl. 

H e r e  F i s  t h e  s e c o n d  a n t i d e r i v a t i v e  o f  fo  w h i c h  v a n i s h e s  a t  z = 0 and  z = 1. I t  i s  e a s i l y  
s e e n  t h a t  F = v 0 + 1 [ s e e  ( 8 ) ] .  We l e t  t h e  i n t e g r a l  f ~ 0 d z  be  g i v e n  by t h e  f u n c t i o n  ( - V o / S ~ )  
and  C i s  t h e  c o n s t a n t  o f  i n t e g r a t i o n .  We t h e n  o b t a i n  f r o m  ( 9 )  

0 %  = - g w l  + 2 ( s , p -  v) ~o v + s,~c. 

The solvability of this equation will give the increment ~. We multiply this equation by w 0 
and integrate from 0 to i. Evaluating the resulting integral on the left-hand side by parts 
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using the boundary conditions and (8), we obtain the expression 

Because 
1 '1  

0 @ 

1 

- 4 = 4 c .  
0 

integrating the second equations of (9), we obtain 

1 " 

S uhdz = C. 
0 

Hence we finally obtain T = s,/2~ ~ ~(s -- s,) and therefore a = ~. 

We c a l c u l a t e  ~ and  R a , ,  p u t t i n g  s = s . ,  v =  v o ~ k 2 v l ,  w = W o ~ - k ~ w l ,  0 = 0 o + k 2 0 1 ,  ~ = ~ k 2 ,  
and so  on .  We h a v e  ( 8 )  f o r  v 0 ,  w0, f o ,  and ~o and  f o r  9 0 we h a v e  t h e  e q u a t i o n  820 0 = -w o 
w i t h  t h e  b o u n d a r y  c o n d i t i o n s  e 0 ( 0 )  = 0 0 ( 1 )  = 0 ,  w h i c h  i s  e a s i l y  s o l v e d .  The f i r s t  a p p r o x i -  
m a t i o n  i n  k 2 i s  

O~vl + O~wl = (i  + DVo, 0~xl  + 1~ = Wo. 

The further steps are analogous to those for the calculation of ~. The solvability condi- 
tion for the above equations gives 

5 [  s4 q- 20s2. q -420 ] 
= ~ -  R a *  6oos4, I . 

Ra -- Ra, 
Because 7 = ~ k~ = ~ Ra-----~ ks' we have 

~l = 5/2, Ra ,  = 600s , / ( s ,4  4 + 20s2, + 420) ~ 337,8, S ,  ---- s , / R a ,  ~ i .86.  i0  -e .  

In the general case the neutral stability curves can be found numerically. In Fig. 2 curves 
1-4 correspond to S = 0, 0.25S,, S,, 2S,. When the spirality increases from 0 to S, the 
minima of the neutral stability curves shift toward longer wavelengths and the value of the 
minimum decreases. When S i> S, the minimum is reached at the point k = 0 and is equal to 
Ra,S,/S [compare (4)]. 

We consider the case when the velocities vanish at both boundaries: u = v = w = 0. Cal- 
culations similar to above then give s, = 2n, ~ = ~, ~ = 2, Ra, = 384n~/(2n ~ + 15) ~ I077 96, S, 
5.83"10 -s The neutral stability curves for these boundary conditions were calculated numer- 
ically and are shown in Fig. 3, where curves 1-4 correspond to S = 0, S = 0.7S,, S,, 1.3S,. 

In the case where the velocities vanish on the lower boundary (z = 0), while the upper 
boundary (z = i) is free, we have 

38, 
s ,  = tg s ,  ~ 4.4934, a = ~ N 1.i756, 

9Os4. 8 + c 
Ra.  = (8 + C), 3i5 -~- 6s-----"~. ~" 130t , t2 ,  ~1 = 4 ~  "~" 1.3488, 

S ,  = s , / R a ,  ~ 3.4535. i0  -3, 
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) C=3{s-~* + A  A, A = i - -  t +  t sins,. where 85 

The n e u t r a l  s t a b i l i t y  c u r v e s  a r e  shown in  F i g .  4, where  c u r v e s  1-5 c o r r e s p o n d  t o  S = 0, 
0 . 7 S , ,  S , ,  1 . 3 S , ,  2S , .  We n o t e  t h a t  Ra ,  z 1301 i s  g r e a t e r  t h a n  t h e  minimum R a y l e i g h  number 
a t  S = 0, which  i s  a p p r o x i m a t e l y  e q u a l  t o  1100. T h e r e f o r e  a t  S = S,  t h e  p o i n t  k = 0 i s  a 
l o c a l  minimum and d i s t u r b a n c e s  w i t h  k = 0 become most  u n s t a b l e  f o r  l a r g e  S: S > 1 . 4 S , .  

From t h e  c a s e s  a n a l y z e d  h e r e ,  we c o n c l u d e  t h a t  when t h e  s p i r a l i t y  i n c r e a s e s  f rom 0 t o  
a c e r t a i n  v a l u e  S ,  t h e  minimum of  t h e  n e u t r a l  s t a b i l i t y  c u r v e s  Ra0(k ,  S) s h i f t s  in  t h e  d i r e c -  
t i o n  o f  s m a l l e r  wave numbers k,  and hence  t h e  h o r i z o n t a l  d i m e n s i o n s  o f  t h e  c o n v e c t i o n  c e l l s  
i n c r e a s e .  When S ~ S ,  t h e  minimum i s  r e a c h e d  a t  k = 0 and t h e  h o r i z o n t a l  d i m e n s i o n s  o f  t h e  
c e l l s  a r e  l i m i t e d  by t h e  e x t e r n a l  c o n d i t i o n s  ( f o r  example ,  i n h o m o g e n e i t i e s  in  t h e  h o r i z o n t a l  
d i r e c t i o n ) .  

LITERATURE CITED 

i. S.S. Moiseev, P. B. Putkevich, A. V. Tur, and V. V. Yanovski~, "Vortex dynamo in a con- 
vective medium with spiral turbulence," Zh. Eksp. Teor. Fiz., 94, No. 2 (1988). 

2. G.Z. Gershuni and E. M. Zhukhovitskii, Convective Instability of an Incompressible 
Fluid [in Russian], Nauka, Moscow (1972). 

3. A.S. Monin and A. M. Yaglom, Statistical Fluid Mechanics [in Russian], Nauka, Moscow 
(1965), Part i. 

EFFECT OF INTERPHASE MASS TRANSFER ON THE TURBULENCE ENERGY OF A 

FLOW OF A GAS SUSPENSION 

V. A. Naumov UDC 532.529 

Semiempirical turbulence models based on equations describing the transfer of fluctua- 
tion energy are widely used to calculate flows of gas suspensions (see [1-3] and the accom- 
panying bibliographies). Here, we attempt to use these models to describe the flows of gas 
suspensions with phase transformations (such as in [3], where allowance was made for the 
heterogeneous combustion of dispersed particles). We will analyze the direct effect of inter- 
phase mass transfer on the turbulence energy of the dispersion medium. 

i. Equation of Turbulence Energy Transfer. In the presence of phase transformations, 
the equations of conservation of mass and momentum for the carrier phase (dispersion medium) 
are written as follows [4] 

89/8t -F V" (9V) = J;  ( 1 . 1 )  

9 dr~dr ~- - - V P  + V T - -  F + Y(Vp - -  V), ( 1 . 2 )  

where p and Y a r e  t h e  d i s t r i b u t e d  d e n s i t y  and v e l o c i t y  of  t h e  d i s p e r s i o n  medium, t h e  sub-  
s c r i p t  p d e n o t e s  t h e  d i s p e r s e  p h a s e ,  J i s  t h e  i n t e n s i t y  o f  t h e  i n t e r p h a s e  mass t r a n s f e r ,  p 
i s  p r e s s u r e ,  T i s  t h e  s h e a r  s t r e s s ,  F i s  t h e  i n t e r f a c i a l  f o r c e .  

Using (I.i) and (1.2) and a well-known procedure (see [3], for example), we can obtain 
an equation for the fluctuation energy of the dispersion medium k. If we ignore fluctuations 
of the density of the gas p', this equation has the form 

, . 

9 V v k  = V [~V k - -  9 <V'( IV'2 + / / 9 )  )] - -  P< V'V'  )V V -[- ~~ (V v(d~v V'))  + <p'v V' ) - -  9(e -~ ep ~- e ; ) ( 1 . 3 )  

Here and below, the primes denote the fluctuation component, while the remaining terms are 

averaged over time; pe = ~,<(0V~/0x~)2> is the rate of viscous dissipation of the turbulence 
~j 

energy, ~ is the coefficient of dynamic viscosity of the gas, pep=~<F~V~> is a dissipative 
i 

term due to the dynamic interaction of the phases and fluctuation motion. 
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